
Release Information for the Second Major Version of the Language

Raku Perl 6
DIWALI 6.d

What is Raku?
Some community members believe "Perl 6" is a very confusing name: it uses a digit as part of
the name and it conflicts with the name of a sister language "Perl". Some outsiders don't realize
"Perl 6" is a brand new language—vastly different than "Perl"—and so avoid it, thinking they
know what it is already. At the same time, some who love "Perl" come to "Perl 6" and feel tricked,
because the language isn't the next release of that language, but an entirely different one.

To clear up the confusion, Larry Wall created a second name for the language, a "stage name" if
you will. That name is "Raku". It can be used interchangeably with the original "Perl 6" name or
even be combined with it to form "Raku Perl 6". Pick the one that works the best for you and use
it consistently.

What is your preferred name for the language?

Table of Contents
•	What's Being Released?
•	Upgrade Info
•	ChangeLog
•	Policy Changes
•	Authors
•	The Future

What is being released? Upgrade Info

The Language Specification
The Raku Perl 6 language is defined by its specification.
This release brochure is for the second major version of that
specification, version number 6.d, code named "Diwali".

Only a portion of all the language changes require you to do anything about it. The
Version-Controlled Change will require you to adapt your code to the new behaviour
or to request 6.c language in your file by adding use v6.c; pragma at the top of it.
Deprecations require to switch away from the deprecated features, but they will
continue to work for a couple of years or longer. The rest of the changes do not require
you to do anything.
The ChangeLog on the pages that follow—where possible—gives details on the
alternative code to use,

Compiler Implementation
Compilers that implement the specification will switch to support
6.d Diwali version by default and follow their standard release
schedule.

If you use the Rakudo compiler, the next version release process will
start on November 17, 2018.

Compiler Distributions
Some implementations offer compiler distributions that include a
compiler and some modules. Rakudo Star is one of such distributions
and it's currently unknown if an out-of-schedule release of Rakudo
Star will be with v6.d language as default.

Third Party Packages
Third-party packages will get updated following their standard
release schedule.

Non-Conflicting Changes
These are changes that do not conflict with 6.c language and
so will not impact your old code. The compilers are free to make
these changes available even when 6.c language is enabled by
the version pragma.

Keep in Mind
Version pragmas must be the
first thing in a file (preceeding
comments and Pod are
OK) and they only affect
non-backwards compatible
language changes, not all the
6.d changes.

use v6.c;
my num $x;
say $x; # Output: NaN

Version-Controlled Changes
For non-backwards compatible changes, you can still get the old
behaviour by asking to use 6.c language using a version pragma:

Deprecations
Some language features are no longer available in the new
language version. Compilers that had them implemented should
continue to support them, while possibly emitting a deprecation
warning when 6.d language version is used.

Implementation-Specific Note
It is known that Rakudo
compiler currently cannot emit
version-dependent deprecation
warnings. Due to this issue,
deprecated features will be
supported for a longer time
period (until 6.e/6.f release).

Types of Changes
The 6.d language changes can be broadly grouped into: (a)
non-backwards compatible changes that are not available when
a file requests an older language version; (b) non-conflicting
changes; and (c) deprecations

ChangeLog (cont)

Introduction
This document lists changes in Perl 6.d (Diwali) language from Perl 6.c (Christmas) version. A particular
implementation of the language may contain additional changes; please consult with the changelog for your
implementation.
At the same time, a particular implementation may have had certain features already implemented during the 6.c
version period. This ChangeLog concerns itself with new features added to the specification on a language level
and not the status of their implementation in a particular compiler.

Scope and Target Audience
This ChangeLog is targeted towards language users, to help with preparation to use compilers supporting
latest language version. Thus, it does not contain every minute change to the specification that occurred.
Implementations wishing to ensure full compliance with the new version of the language specification should
execute the test suite available at https://github.com/perl6/roast/ and examine any failing tests.
There are new features that did not exist in 6.c language. For full details about them, please consult with the
language documentation on https://docs.perl6.org/
Items in Version-Constrolled Changes section are protected by version pragma and older behaviours can be
obtained by explicitly using use v6.c to request an older language version. All other changes do not conflict with the
6.c language version and implementations may choose to make them available even when an earlier language
version is requested.

Version-Controlled Changes
• &await no longer blocks a thread while waiting
• whenever not in lexical scope of react throws
• $*ARGFILES inside sub MAIN is always fed by $*IN (see IO::CatHandle type if you need old behaviour)
• Constructs (literally that, with no space inside parentheses) $(), @(), and %() are no longer magical
• Variables with :D/:U type constraints default to type object of the constrained type
 (e.g. so you could use .new with them)
• start blocks in sink context attach exception handler
• Routines must use return-rw to return a Proxy, even if routine is marked as is raw or is rw
• Native num types default to 0e0 instead of NaN
• On subroutine names, the colonpair with key sym (e.g. :sym<foo>) is reserved

Deprecations
These methods are deprecated in 6.d language and will be removed in 6.e. Implementations may choose to emit
deprecation warnings or to offer these methods for a longer period than 6.e release.
• The use of '-' (single hyphen) as a special path to &open to mean the special handles
 (use IO::Special objects instead)
• IO::Handle.slurp-rest (use .slurp instead)
• Any.flatmap (use combination of .flat and .map methods instead)
• Cool.path (use .IO instead)
• Pair.freeze (use Pair.new with decontainerized arguments instead)
• Str.subst-mutate (use Str.subst with .= method call assign metaop instead)
• Rational.norm (Rational types are required to be normalized on creation now)

• IO::Path.child (use .add instead)
• &undefine (assign Empty/Nil directly, instead)
• :count argument on &lines/Str.lines routines (use .elems call on returned Seq instead)
• &is_approx in Test.pm6 (use the very similar behaviour of &is-approx instead)

New Behaviors
• Improved custom handling of sub MAIN via new definable &RUN-MAIN, &ARGS-TO-CAPTURE, and &GENERATE-USAGE

subs
• QuantHashes/Map in % variables and List in @ variables can be declared with is trait (e.g. my %h is Set)
• New <ww> regex rule: match within word only
• Loops can produce a list of values from the values of last statements
• last/redo in a loop that collects its last statement values return Empty for the iterations they run on
• .perl can be called on consumed Seqs, multi-dimensional arrays, Date, and CallFrame
• .gist can be called on Attribute
• Numerous improvements to auto-generated USAGE message
• is hidden-from-USAGE trait to hide sub MAIN candidates from auto-generated USAGE message
• Parameter.perl includes introspectable defaults
• %*ENV values are allomorphic
• Trying to use variables $;, $,, $., $\, $(, $), $<, $>, $/, $\, $[, $-, $+, and $@ throws X::Syntax::Perl5Var
• Default Hash.of returns a Str(Any) coercer type object
• Non-ASCII numerics can be used in :42foo colonpair shortcut
• StrDistance stringifies to its .after string
• More well-defined formatting of Pod tables
• Enumeration.enums returns a Map
• .Range on various integer types returns the range of values they support
• min/max routines also work on Hashes
• Signature literals can contain string/numeric literals as well as the invocant marker
• List.invert maps via a required Pair binding, resulting in potential type check failures
• :exists can be used with multi-dimensional associative subscripts
• Dynamically created lists can be used to define an enum
• Junctions can be used as a matcher in .first
• Native attributes can be used as bind targets in parameters
• Proc can work with IO::Pipes from other Procs
• Typed arrays can be created with both my SomeType @array and my @array of SomeType
• Items with negative weights are removed when coercing a Mixy to Setty/Baggy
• :nth adverb on m// accepts a Junction as argument
• CX::Warn and CX::Done can be caught inside CONTROL phaser
• next can be used in whenever
• require'd symbols no longer transitively exposed
• Multi-dimensional access via {…}, similar to how it works with […]
• Any open handles at END time get automatically closed
• On a cached Seq, the cached list is used when &infix:<eqv>, .Slip, .join, .List, .list, .eager, .Array and

.is-lazy are called
• IO::Handle.encoding takes Nil to indicate switch to binary mode
• is default trait works with attributes
• Parameters with is rw trait are considered narrower in multi dispatch than those without it
• .gist of Array, Blob, and Map gets trimmed to 100 elements

ChangeLog (cont)

• New for statement modifiers hyper for, race for, and lazy for
• for loop automatically serializes RaceSeq/HyperSeq; use new for statement modifiers hyper for/race for to avoid
• &infix:<does> can be used with non-composable instances on RHS
• Numeric comparators can be used with DateTime objects
• Pod preserves the type of whitespace
• Defined semantics for @-, %- and &-sigilled constants

Math
• Rationals are always reduced on creation and remain immutable throughout their life
• -Inf, Inf, and NaN can be round-tripped through a Rational type by being represented as values <-1/0>, <1/0>,

and <0/0> respectively. Zero-denominator Rationals are normalized to one of those three values
• Calling .Int on ±Inf and NaN throws
• Improved IEEE 754-2008 compliance in Num operators and math functions
• Negative zero Num (-0e0) gets correctly handled by all routines and syntactical constructs
• Stringification of Num type is required to be roundtrippable to the original Num
• Defined Complex exponentiation involving zeros
• Negative powers in .expmod are valid

Sets, Bags, Mixes (aka QuantHashes) and set operators
• Set operators can be used on any object, which will be coerced when needed

• So no pre-coercion is needed or wanted
• Set operators are at liberty to not create any QuantHash if they can perform the desired functionality

without them
• Set operations on different types of QuantHashes will coerce to the most liberal form (Set ➜ Bag ➜ Mix)
• The set_precedes family of set operators ((<+), ≼, (>+), ≽) has been removed

• Used to be a Baggy form of the subset operator
• QuantHashes are upgraded to their most liberal form, so (<=), ⊆, (>=), ⊇ do the right thing

• .classify-list method is available on Baggy types
• .categorize-list method is available on Baggy types
• .invert method is available on core QuantHash types
• .antipairs method can be used on QuantHash types
• QuantHash types have .new-from-pairs and methods to convert one QuantHash type to another (e.g. .Bag method

on Set type)
• .hash on QuantHash types does stringify keys

New Parameters and Arguments
• Date.new accepts a :&formatter
• .first can take :kv
• unique and .repeated can take :&as and :&with
• &plan in Test.pm6 can take :skip-all
• &run/&shell can take :merge
• ¬e can be called with no arguments
• open accepts :$out-buffer
• IO::Path.resolve can take :completely
• IO::Path.parent can take an Int indicating parent level
• Proc::Async.new slurps positional arguments
• Signature.ACCEPTS accepts non-Signature/Capture arguments
• &EVAL can take a Blob

• Promise.keep/.break can be called with no arguments
• .sum on native arrays can take :wrap
• is required trait can now take an argument indicating reason
• IO::Socket::Async.listen can bind to port 0 to ask OS for a free port
• .encode can take :translate-nl

New Routines and Operators
• New atomicint Unicode operators and ASCII alternatives that guarantee thread-safe, atomic

operation: &infix:<⚛=>/&atomic-assign, &prefix:<⚛>/&atomic-fetch, &prefix:<++⚛>/&atomic-inc-fetch,
&postfix:<⚛++>/&atomic-fetch-inc, &prefix:<--⚛>/&atomic-dec-fetch, &postfix:<⚛-->/&atomic-fetch-dec,
&infix:<⚛-=>/&infix:<⚛−=>/&atomic-fetch-sub, and &infix:<⚛+=>/&atomic-fetch-add

• &cas: atomic compare and swap
• The ≤, ≥, and ≠ operators are Unicode operator alternatives to <=, >=, and != respectively
• &infix:<unicmp>/&infix:<coll>: alternative behavior of &infix:<cmp>
• TR/// operator: non-mutating version of tr///
• submethod TWEAK: similar to BUILD, except it's compatible with attribute defaults
• &duckmap: apply &callable on each element that behaves in such a way that &callable can be applied
• &deepmap: apply &callable on each element, descending into Iterables
• &take-rw: like &take but with a writable container
• &indir: execute code in a given $*CWD
• &spurt: see IO::Path.spurt
• &prompt: prompt user for input
• uniprops: multi-character version of uniprop
• symlink: create a file symlink
• link: create a file hardlink
• .hyper/.race: process a list of values in parallel
• Seq.from-loop: generate a Seq from a Callable
• Str.uniparse: parse one or more Unicode character names into the actual characters
• Str.parse-base: inverse of Int.base operation
• IO::Path provides .ACCEPTS, .SPEC, .CWD, .Numeric, .add, .extension, .mode and numerious file tests, .parts,

.sibling, and .spurt
• IO::Handle provides .READ, .WRITE, .EOF, .DESTROY, .readchars, .flush, .lock, .unlock, .out-buffer, .tell, .say,

.slurp, .seek, .printf, .print-nl, and .watch
• IO::Pipe provides .proc
• Iterator provides .skip-one, .skip-at-least, and .skip-at-least-pull-one
• Mu.emit: method form of &emit
• &fails-like in Test.pm6 module: allows testing for Failures
• &bail-out in Test.pm6 module: exit out of failing test suite
• &is-approx in Test.pm6 module: test a number is approximately like another
• Buf has .allocate, .reallocate, .append, .push, .pop, .splice, .subbuf-rw, .prepend, and .unshift methods
• Range supports .rand
• Backtrace has methods .map, .flat, .concise, and .summary
• .classify-list method is available on Hash types
• .categorize-list method is available on Hash types
• Code.of: returns the return type constraint
• Code.line/.file: returns the line/file of definition
• Proc::Async provides .Supply, .ready, .pid, .bind-stdin, .bind-stdout, and .bind-stderr

ChangeLog (cont)

• Proc.command/Proc::Async.command: the command we're executing
• Proc provides .signal, .pid, and .encoding
• Complex provides .cis, .reals, .ceiling, .floor, .round, .truncate, and .abs methods and can be compared with

<=> (as long as the imaginary part is negligible)
• DateTime provides .offset-in-hours, .hh-mm-ss, and .Date
• DateTime can be compared with other DateTime objects using <=> operator
• Date provides .DateTime method
• &infix:<+>/&infix:<-> can be called with Duration, DateTime, and Real types
• Enumeration provides .Int, .pred, .succ, .kv, and .pair
• .Date can be called on an Instant
• Junctions can be created using Junction.new call
• List type has .to and .from methods
• Map type provides .Int method, returning the number of pairs
• Any.skip: skip values in a list
• Any.batch: more basic cousin of .rotor
• Mu.iterator: produce an Iterator for values in a list
• IO::Spec::* types provide .tmpdir, .extension, and .path
• Pair provides .ACCEPTS, .Pair, and .invert
• .Capture method is well-defined for all core types
• Defined semantics of .ACCEPTS on allomorphs
• Failure.self explodes unhandled Failures
• Thread.is-initial-thread: are we running in the initial thread?
• Match provides .Int and .actions
• IO::Socket::Async provides .socket-port and .peer-port
• Promise provides alternative constructors .kept and .broken
• WhateverCode provides .assuming
• WhateverCode and Block provide .cando
• .:<…> syntax for calling prefix operators as postfixes
• $*KERNEL provides .hostname
• Nil has .FALLBACK special method defined to return Nil

New Types
• atomicint: a native int sized to be usable with new atomic operators
• Lock::Async: a non-blocking mechanism for mutual exclusion
• Encoding::Registry: manage available encodings
• Encoding::Encoder: encoder for a specific encoding
• Encoding::Decoder: decoder for a specific encoding
• IO::CatHandle: use multiple read-only IO::Handles as if they were one
• Native str arrays
• Supplier::Preserving: cached live Supply factory
• Semaphore: control access to shared resources by multiple threads
• IO::Special: a path to special I/O device (e.g. STDOUT)
• Exceptions::JSON: an implementation of custom exceptions handler (can be used
 with PERL6_EXCEPTIONS_HANDLER env var)
• SeekType enum: values for use in IO::Handle.seek

New Variables
• $*USAGE: available inside MAIN subs and contains the auto-generated USAGE message
• %*SUB-MAIN-OPTS: settings for behaviour of sub MAIN
• %*SUB-MAIN-OPTS<named-anywhere>: allow named arguments to be placed at any position on the command line
• $*COLLATION: configures the four Unicode collation levels
• $*INIT-INSTANT: an Instant representing program startup time
• $*HOME: user's home directory, if one exists
• &*chdir: a Callable containing a variant of IO::Path.chdir that also sets process's current directory
• PERL6_TEST_DIE_ON_FAIL environmental variable: stop test suite on first failure
• PERL6_EXCEPTIONS_HANDLER environmental variable: specify custom exceptions handler class

Clarifications of Edge Case/Coercion Behaviour
• UInt smartmatches True with Int type object
• sink statement prefix explodes Failures
• Defined behaviour of permutations/combinations on 1- and 0-item lists and negative and non-Int arguments
• &val, Str.Numeric, and other Str numeric conversion methods fail when trying to convert Unicode No character

group or synthetic numerics
• Synthetic numerics cannot be used in :42foo colonpair shortcut
• An Enumeration can now be used as a array shape specifier
• Numeric conversion of Str containing nothing but whitespace returns 0 now
• samemark with empty pattern argument simply returns the invocant
• .polymod can be used with lazy but finite lists of divisors
• .[*-0] index is defined
• Negative gaps in .rotor that are larger than the sublist throw
• Non-Int arguments to .rotor get coerced to Int
• .lines is defined when reading /proc files
• Defined behaviour of Thai numerals in postfix/prefix ++/-- on strings
• map inside sunk for is treated as sunk
• Sunk for loop sinks value of last statement's method call
• .Int on Bool objects returns an Int object
• splice can be used to extend an array
• classify works with Junctions
• .pairup on a type object returns an empty Seq
• .pairup always returns a Seq
• Synthetic codepoints are rejected from Date/DateTime constructors
•	 ⸨/⸩ pair can now be used as matching characters in quoting constructs
• .flat on an Array type object simply returns that type object
• Mixed-level classify on Hashes throws
• Junctions can be used to specify multiple keys to Hashes
• The Callable given to classify-list is now guaranteed to be executed only once per each item
• :delete on associative lookup on Hash type object returns Nil
• &is-deeply from Test.pm6 automatically .caches Seqs given as arguments and uses the returned Lists for

testing
• Complex.new() gives <0+0i>
• Int.new is now guarantied to construct a new Int (rather than, say, re-use one from a constants cache)
• 1-arg versions of &infix:<=:=> and &infix:<eqv> are defined

ChangeLog (cont)

• Nil type now throws if directly or indirectly calling .BIND-POS, .BIND-KEY, .ASSIGN-POS, .ASSIGN-KEY, .STORE, .push,
.append, .unshift, and .prepend

• Nil.ord returns an empty Seq
• Nil.chrs returns a "\0"
• Num.new coercers argument to Num
• infix:<Z>() returns an empty Seq
• .comb always returns a Seq
• Reduce with &infix:<+> with one item simply returns that item
• ()[0] returns Nil
• Regex smartmatching is allowed on (possibly-infinite) Seq
• Defined smartmatching with Range objects
• Set converted to a Mix/Bag no longer has Bool weights
• &infix:<gcd> is defined when one or more operands are 0
• Junctions autothread in defined routine
• sum can handle lists with Junctions in them
• Grammar.parse lets top regex backtrack
• The U+2212 MINUS SIGN [Sm] (−) is now supported by more constructs, such as Str.Numeric and &val
• Arity-1 &infix:<~> works with Blobs
• All Numeric literals are supported as value literals in signature
• \b and \B in regexes throw X::Obsolete
• True and False as value literals in signatures warn
• Return type of .sort and IO::Spec::Unix.path is always Seq
• Out-of-range .AT-POS on Range objects returns Nil
• Pair.AT-KEY for non-existent key returns Nil
• All Cool types provide .Rat/.FatRat coercers
• IO::Path filetests do not cache results of earlier test executions
• Seq eqv List as False based on type mismatch alone
• On arrays, Hashes, and QuantHashes, values from .kv, .values, and .pairs sequences are writable
• &infix:<∘>/&infix:<o> keep LHF's .of and RHS's .arity and .count
• Refined accepted arguments in regex operator adverbs (e.g. :in(…))
• Refined accepted combinations of arguments in IO::Handle.open
• IO::Path.Str does not include the value of .CWD attribute
• IO::Path type rejects paths with the nul byte ("\0") in them
• IO::Pipe's .path/.IO return an IO::Path type object
• IO::Path's .copy/.move fail if destination and original are the same
• dir-created IO::Paths' absoluteness is controlled by the invocant
• More-defined edge-case behaviour, Callable handling, .defined calling, and chaining of &infix:<andthen>,

&infix:<orelse>, and &infix:<notandthen> operators
• Zen slicing of Seqs does not cache them
• List.Capture stringifies keys of any contained Pair objects
• &fail with handled Failure argument marks it as unhandled
• use lib accepts IO::Path objects
• Anchors ̂ , ̂ ,̂ $, and $$ are valid in lookarounds
• Grammar.made supports type objects
• .isa supports subset type objects
• :delete can be used on lazy arrays

• &infix:<eqv> can work with certain cases of lazy arguments
• Dynamic lookup (::(…)) is restricted regex syntax and requires use MONKEY-SEE-NO-EVAL clearance
• Defined .Slip and .List on arrays with holes
• Promise.in/.at and Supply.interval work with zero and negative values
• Supply.interval minimum value is 0.001; lower values are treated as 0.001 and emit warnings
• Supply provides .Seq, .list, and .zip
• Can bind to native type attributes in build methods
• WhateverCode propagates use fatal
• say, note, put, print, and printf routines autothread Junctions
• IO::Handle.eof value changes accordingly when .seeking past end and back
• Defined .succ, .pred, and .Bool on allomorphs
• Defined .Bridge on core Numerics
• Defined .Numeric/.Real on type objects of core Numerics
• Defined Rational.Bool with respect to zero-denominator rationals
• say/note guaranteed to call .gist on subclasses of Str
• Defined Junction.Str returns a Junction
• Defined Junction.gist/.perl return a Str
• Map/Hash's .list/.cache return a List
• Defined .round's return type
• Defined Enumeration:D not does .ACCEPT an Enumeration:U

Miscellaneous
• The IO::ArgFiles type is just an empty subclass of IO::CatHandle
• Constraints on constants

• Constraints are fully enforced
• Attempting to parametarized type constraints on constants (i.e. using my Foo constant @int) throws

X::ParametricConstant exception
• Pod =defn (definition list) directive is available
• Pod provides :numbered config key
• .^ver, .^auth, and .^name metamethods are available on module and are absent on a package, by design
• Fancy quotes (’…’, “…”, ｢…｣, and variants) are supported in qww<…>
• &infix:< > supports lookup of autogenerated Callables (e.g. &infix:<XX>)
• Using a named anon sub no longer produces redeclaration warnings
• Extended spec of ::?MODULE/$?MODULE variable
• sub MAIN can accept an Enumeration type constraint and where clause on arguments
• Type smiley constraints can be used on subsets
• start blocks and thunks get fresh $/ and $!
• R meta operator used with list-associative operators is defined
• Type coerces can be used in signature return type constraints
• &infix:<x>/&infix:<x> throw with -Inf/NaN repeat arguments
• Literal constructs put and put for throw, requiring use of parentheses
• Expanded specification coverage of Unicode routines and features
• Upgraded coverage to Unicode version 11
• $. method call syntax shorthand works with meta-methods

Policy Changes Authors
Inclusion in Language Specification
It is now a policy that to be included in the language
specification a "Proof of Viability" of a feature must be first
successfully implemented in any largely-useful implementation
of the language. The goal here is to avoid including language
features that might be in conflict with some other feature.

The following people contributed to this version of the language, including making
documentation updates and contributing work to known open-source compiler
implementations. The list is ordered alphabetically.

If you believe your name has been erroneously omited, please contact us
(https://perl6.org/irc), and we'll update the primary copy of this list.

Inclusion of New Features
To ensure we grow the language in a coherent manner, we're
creating stricter requirements for the inclusion of new features
in the language. The rough first draft of the policy is available
in the specification's repository at
https://github.com/perl6/roast/blob/master/docs/New-Features-Policy.md
That document will likely see significant changes as we start
applying it and refine the process to ensure the best outcome.

New Resources
We now post critical alerts related to the language on
https://alerts.perl6.org/ (see also WWW::P6lert / p6lert in ecosystem)

We launched a new subdomain https://marketing.perl6.org/
The site contains marketing materials for the language as well
as a way to make a request for new materials you need.

0racle, A. Sinan Unur, ab5tract, Adrian White, Ahmad M. Zawawi, Alberto Luaces, Aleks-Daniel Jakimenko-Aleksejev,
Alex Chen,	Alex	Elsayed,	Alex	Schroeder,	Alex	Wander,	Alexander,	Alexey	Melezhik,	Alexis,	Alexius	Korzinek,	allan,	
Altai‑man,	Amir	Aharoni,	andreoss,	Andrew	Ruder,	Andrew	Shitov,	Andy	Weidenbaum,	Anthony Parsons,	Antonio,	
Antonio	Quinonez,	antoniogamiz,	Armand	Halbert,	Arne	Skjærholt,	Athos	Ribeiro,	Bahtiar	̀ kalkin‑ 	̀Gadimov,	
Bart Wiegmans,	Bartosz	Janus,	bazzaar,	Ben	Davies,	benji,	Benny	Siegert,	Bill	Barry,	bitrauser,	Brad Gilbert,	
Breno G. de Oliveira,	Brent	Laabs,	brian	d	foy,	Brian	Duggan,	Brian	Gernhardt,	Brian	S.	Julin,	Brock	Wilcox,	
Bruce Gray,	bspecht,	Cale,	Carl	Mäsak,	CC,	Cecilia,	cfa,	Christian	Bartolomäus,	Christian	Sánchez,	Christian	Walde,	
Christopher Bottoms,	chromatic,	Claudio	Ramirez,	Clifton	Wood,	Coleoid,	COMBORICO,	coypoop,	cpin,	Cuon 	Manh Le,	
Curt	 Tilmes,	cygx,	Dabrien	'Dabe'	Murphy,	Dagfinn	Ilmari	Mannsåker,	Dale	Evans,	Dan	Book,	Dan	Kogai,	Dan	Miller,	
Dan Zwell,	Daniel	Dehennin,	Daniel	Green,	Daniel	Mita,	Daniel	Perrett,	dariusantia,	Dave	Olszewski,	Dave	Rolsky,	
David Brunton,	David	H.	Adler,	David	M.	Cawthon,	David	Warring,	dmaestro,	Dmitri	Iouchtchenko,	Dominique Dumont,	
Donald	Hunter,	Douglas	Jenkins,	Douglas	L.	Schrag,	Douglas	Schrag,	dugword,	eater,	Eckhart Arnold,	Eike Frost,	
Elena Merelo,	Elise,	Elizabeth	Mattijsen,	Emeric54,	Eric	de	Hont,	Fernando	Correa	de	Oliveira,	Fernando Santagata,	
fireartist,	flussence,	Francis	Grizzly	Smit,	Francois	Perrad,	francois@<redacted>,	Fritz Zaucker,	Fyodor	 Sizov,	Gabor Szabo,	
Garrett Goebel,	Geoffrey	Broadwell,	gerd,	Gerd	Pokorra,	gotoexit,	Greg Donald,	Harrison Chienjo,	holli‑holzer,	ianmcb,	
ijneb,	ilyash‑b,	Innokenty	Shniperson,	Itsuki	Toyota,	İsmail	Arılık,	Jack	Kuan,	Jake Russo,	James	(Jeremy)	Carman,	
Jan‑Olof Hendig,	Jared	Miller,	Jarkko	Haapalainen,	Jason	Cole,	Jeff	Linahan,	Jeffrey Goff,	Jeremy Studer,	Jim Davis,	
Jimmy Zhuo,	jjatria,	Joachim Durchholz,	Joel,	Joelle	Maslak,	John	Gabriele,	John	Harrison,	John Spurr,	Jonas	Kramer,	
Jonathan Beebe,	Jonathan Scott	Duff,	Jonathan	Stowe,	Jonathan	Worthington,	Josh	Soref,	José	Albert Cruz	Almaguer,	
Juan Julián	Merelo	Guervós,	Juerd	Waalboer,	Julien	Simonet,	Justin DeVuyst,	karl	yerkes,	kjpye,	KlappeZuAffeTot,	
Kris Shannon,	Lance	Wicks,	Larry	Wall,	LE	Manh	Cuong,	lefth,	LemonBoy,	Leon Timmermans,	Lichtkind,	LLFourn,	
Lloyd Fournier,	Luca	Ferrari,	Lucas	Buchala,	Luis	Balderas	Ruiz,	Luis F.	 Uceta,	M,	M.	Faiz	Zakwan Zamzuri,	Maik Hentsche,	
Marc	Chantreux,	Marcel	Timmerman,	Mario,	Mark	Montague,	Mark	Rushing,	Martin	Barth,	Martin Dørum Nygaard,	
Martin Ryan,	Mathieu	Gagnon,	Matt	Oates,	Matthew Wilson,	Matthias	Bloch,	mendel,	Michael	D.	Stemle,	Jr,	Michal Jurosz,	
Mint,	Moray,	MorayJ,	Moritz	Lenz,	mryan,	Nacho	Mas,	Nadim Khemir,	Naoum	Hankache,	Nat,	Neil Shadrach,	Nelo Onyiah,	
neuron, Nic, Nic Q, Nick Logan, Norbert Buchmueller, Nova Patch, nsvedberg, Nuno 'smash' Carvalho, okaoka,
Oleksii Varianyk,	Panu	Ervamaa,	parabolize,	Patrick	R. Michaud,	Patrick	Sebastian	Böker,	Patrick	Sebastian Zimmermann,	
Patrick	Spek,	Patrick	Zimmermann,	Paul	Cochrane,	Paul Smith,	Paula,	Paweł	Murias,	Pepe	Schwarz,	Peter	Stuifzand,	
Philippe	Bruhat	(BooK),	Piers	Cawley,	Prakash Kailasa,	Przemysław	Wesołek,	Páll	Haraldsson,	Rafael	Schipiura,	
raiph,	Randy	 Lauen,	raydiak,	Reini	Urban,	Reko98,	ribbon‑otter,	Richard	Hainsworth,	Rob	Hoelz,	Robert	Lemmen,	
Robert Newbould,	Ronald Schmidt,	ryn1x,	Salvador	Ortiz,	Salve	J.	Nilsen,	Sam	Morrison,	Sam	S,	Samantha	McVey,	
sarna,	seatek,	Shlomi	Fish,	Siavash Askari Nasr,	Simon	Proctor,	Simon	Ruderich,	Skarsnik,	smls,	Stefan	Fischer,	
Stefan Seifert,	Sterling	Hanenkamp,	Steve	Bertrand,	Steve	Mynott,	Stéphane	Payrard,	Sylvain	Colinet,	sylvarant,	
Tadeusz “tadzik” Sośnierz,	thebooort,	Thor	Michael	Støre,	threadless‑screw,	thundergnat,	Tim	Smith,	Timo	Paulssen,	
Tobias	Boege,	Tobias	Leich,	Tom	Browder,	tomboy64,	Tommy	Stanton,	Trey	Harris,	Tzu‑Li "tison" Chen,	Tzu‑Li	Chen,	
Valentin	Anger,	ven,	Viacheslav	Lotsmanov,	vinc17fr,	Vladimir	Marek,	Vynce	Montgomery,	VZ,	Wenzel	P.	P.	Peppmeyer,	
Will	"Coke"	Coleda,	wukgdu,	Zak	B.	Elep,	Zoffix	Znet,	ZzZombo,	唐鳳, 陈梓立

The Future

Happy Diwali!

The Future
Now that 6.d release is done, look forward to 6.e release in the
future. It will likely occur sometime in 2020, but we're not in a rush.

If you have any questions about this or future language releases,
you can inquire at our Help Chat at https://perl6.org/irc or on our
mailing list at perl6-compiler@perl.org

