
High-level primitives for
concurrency and parallelism

Built-in Grammars and fantastic Object Model

More-readable and more-powerful regex syntax

One of the world's leaders in Unicode support

Happy, friendly, and welcoming community

Introducing
Perl 6
Brand new, multi-paradigm,
gradually-typed programming language!

TM

Welcome to Rakudo Perl 6
After 15 years of design and
development Perl 6 was
released in 2015 and is now
being used in production.
Perl 6 is a supremely flexible
language, adapting to
your style of programming,
whether that be quick one
liners for sysadmins, scripts
to manage a database
import, or the full stack of
modules necessary to realise
an entire website. Perl 6
enhances Perl’s long
term appeal with a proper
object system including

roles, threading and multi
method dispatch. Perl 6 has
spent a long time coming
to fruition and has learned
from other programming
languages building on their
success and learning from
the issues of the past. We
believe Perl 6 is a language
that will last for decades
as it has been conceived to
adapt to future trends and
is flexible in its usage with
other languages. We have
collected here a list of some
of the many advantages to
using Perl 6.

Hi, my name is Camelia. I'm the
spokesbug for Perl 6, the plucky
little sister of Perl 5. Like her world‐
famous big sister, Perl 6 intends
to carry forward the high ideals
of the Perl community. Perl 6 is
developed by a team of dedicated
and enthusiastic volunteers.
You can help too. The only
requirement is that you know how
to be nice to all kinds of people
(and butterflies).

TM

Thanks to a quirk of history, the
"6" in "Perl 6" is part of the name.
The project was originally planned
to be the next version of Perl,
but ended up a vastly different,
entirely new language.
The original Perl continued its life
on a different design path and is
still actively developed as a sister
language to Perl 6.
There is some effort to create an
alias for the "Perl 6" name, to avoid
this type of naming confusion.

6?

Perl 6 Features Overview
There are many reasons to learn Perl 6.
Here are some of our favourites.

•	 Perl 6 is a clean, modern,
multi-paradigm language;
it offers procedural, object-
oriented AND functional
programming methodologies

•	 Fewer lines of code allow
for more compact program
creation. Huffmancoding of
names (using names whose
brevity is roughly proportional
to frequency of use) allows
for better readability

•	 Advanced error reporting
based on introspection of the
compiler/runtime state. This
means more useful, more
precise error messages

•	 Runtime optimization of hot
code paths during execution
(JIT), by inlining small
subroutines and methods

•	 Easy to use consistent
syntax, using invariable
sigils for data-structures

•	 Garbage collection based:
no timely destruction, so no
ref-counting necessary. Use
phasers for timely actions

•	 Perl6 is a very mutable
language (define your own
functions, operators, traits and
data-types, which lexically
modify the parser for you)

•	Multiple versions of a
module can be installed
and loaded simultaneously.
This means safer upgrades
and no compatibility hell

•	 Adding a custom operator
or adding a trait is as simple
as writing a subroutine

Easy Async & Parallelism
start { sleep 1.5; print "hi" }
await Supply.from-list(<A B C D E F>).throttle: 2, {
 sleep ½; .print
} # OUTPUT: ABCDhiEF

Try this out!
Pick up your favourite language and print
out the result of this arithmetic equality:

Many languages will erroneously say this evaluates to False. The
blame lies in the way computers perform floating point math.

Perl 6, on the other hand, has built-in rational numbers that avoid this
problem. The statement evaluates to True. Accountants love us!

say 0.1 + 0.2 == 0.3

Infinite list of primes:
my @primes = ^∞ .grep: *.is-prime;
say "1001ˢᵗ prime is @primes[1000]"; # 1001ˢᵗ prime is 7927

Lazily read words from a huge file
.say for '50TB.file.txt'.IO.words;

Lazy Evaluation

Built-In Grammars
grammar Parser {
 rule TOP { I <love> <lang> }
 token love { '♥' | love }
 token lang { < Perl Rust Go Python Ruby > }
}

say Parser.parse: 'I ♥ Perl';
OUTPUT: ｢I ♥ Perl｣ love => ｢♥｣ lang => ｢Perl｣

say Parser.parse: 'I love Rust';
OUTPUT: ｢I love Rust｣ love => ｢love｣ lang => ｢Rust｣

The .hyper call creates a HYPER sequence that causes our filter for prime numbers to
run in parallel on multiple cores and still keep the result in the correct order at the end.

New program runtime with that small change? 4.3 seconds!

This program prints the 6001st prime number and takes
12.5 seconds to run on some computers:

How to make it faster?
(^∞).grep(*.is-prime)[6000].say

In the FUTURE,
people use
HYPERSPACE!

Simply add a call to the .hyper method!

(^∞).hyper.grep(*.is-prime)[6000].say

Concurrency, Parallelism,
Asynchrony
•	 Language built from

the ground up with
concurrency in mind

•	 High level concurrency model,
both for implicit as well as
explicit multiprocessing, which
goes way beyond primitive
threads and locks. Perl 6's
concurrency offers a rich
set of composable tools

•	 Multiple-core computers are
getting used more and more,
and with Perl 6 these can be
used thanks to parallelism,
both implicit (e.g. with
the >> hyper operator) and
explicit (start { code })

•	 Structured language
support is provided to
enable programming
for asynchronous
execution of code

•	 Supplies allow code to be
executed when something
happens (like a timer, a signal,
or a filesystem/GUI event)

•	 The keywords react/
whenever/supply allow easy
construction of interactive,
event driven applications

•	 Dynamic variables provide a
lexically scoped alternative
to global variables

•	 Emphasis on composability
and lexical scoping to prevent
“action at a distance”.
For example, imports are
always lexically scoped

•	 Easy to understand consistent
scoping rules and closures

•	 Phasers (like BEGIN/END/
NEXT/LEAVE) allow code to
be executed at scope entry/
exit, loop first/last/next and
many more special contexts

Scoping

Typing
•	 Multi dispatch on identically

named subroutines/methods
with different signatures,
based on arity, types and
optional additional code

•	 Compile time error reporting
on unknown subroutines/
impossible dispatch

•	 Optional gradual
type-checking at no
additional runtime cost. With
optional type annotations

•	 Easy command-line
interface accessible by MAIN
subroutine with multiple
dispatch and automated
usage message generation

multi what-is (Int) { "It is an integer" }
multi what-is (List) { "It is a list" }
multi what-is (Any) { "I don't know" }
multi what-is (Int $ where .is-prime) {
 "It is a prime number!"
}

say what-is 31337; # OUTPUT: It is a prime number!
say what-is 42; # OUTPUT: It is an integer
say what-is <a b c>; # OUTPUT: It is a list
say what-is class {}; # OUTPUT: I don't know

Object Oriented Programming

•	 Powerful object model, with
classes, roles, inheritance,
subtyping, and code reuse

•	 Meta Object Protocol allowing
for meta-programming
without needing to
generate/parse code

•	 Introspection into objects
and meta-objects

•	 Subroutine and method
signatures for easy
unpacking of positional
and named parameters,
and data structures

•	 Methods can be mixed into
any instantiated object
at runtime, e.g. to allow
adding out-of-band data

42.^methods.say;
OUTPUT: (new Capture Int Num Rat FatRat abs Bridge chr
sqrt base polymod expmod is-prime …

class Foo {
 my $.class-attribute;
 has $.instance-attribute;
 has $!private-attribute = 'some-default';

 method do-it {
 say "$!private-attribute and $.instance-attribute";
 }
}

my $o1 = Foo.new: :instance-attribute<foo bar ber>;
my $o2 = $o1 but role {
 method do-it { say uc $.instance-attribute }
}

$o1.do-it; # OUTPUT: some-default and foo bar ber
$o2.do-it; # OUTPUT: FOO BAR BER

•	 Junctions allowing
easy evaluation of
multiple possibilities, e.g.
$foo == 1|3|42 (meaning is
$foo equal to 1 or 3 or 42)

•	 Lazy evaluation when
possible, eager evaluation
when wanted or necessary.
This means, for example,
lazy lists, and even infinite
lazy lists, like the Fibonacci
sequence, or all prime numbers

•	 Lazy lists defined with a
simple iterator interface,
which any class can supply
by minimally implementing
a single method

•	 Native data types for faster,
closer to the metal, processing

•	 Built-in rational numbers that
avoid floating point math noise

•	 Large selection of data-types,
plus the possibility to
create your own

•	 Multi-dimensional shaped
and/or native arrays with
proper bounds checking

•	 Built-in types and operators
for operations with Sets,
Bags, and Mixes, such as
(elem) for "is an element of"
and (&) for set intersection

Data Structures

Try this out!
Need to count something? Put it in a Bag!

Bags are hash-like structures with objects for keys and integer weights
for values. They come in handy when you want to count how many
times a particular object appears in a collection. Bags are a class of
Setty and Mixy types and come with a number of useful set operators.

<p o t a t o>.Bag.say
OUTPUT: Bag(a, o(2), p, t(2))

Concise
Perl used to get bad rep for being write-only
line-noise that only code golfers like.

Decades of such experimentation taught us a lot about
what makes code short and what makes it unreadable.

Perl 6 incorporates that knowledge and delivers a language
that's naturally concise and readable. It achieves this by
eliminating as many special cases as possible, maintaining
consistency between look and function of operators, and
naming more commonly-used routines with shorter names.

Many programmers report their programs become
up to half the size, when converted from other
languages to Perl 6, without sacrificing legibility.

The less code you write, the less code you need
to maintain and read through when you look at
the program in the future. This means you'll make
fewer errors and it'll be easier to find them.

Regexes are the most cryptic part of many languages that just follow
the status quo, leaving their users with unmanageable, unreadable
syntax that's hard to learn and even harder to debug and extend.

Perl 6 reasserts Perl's dominance in the world of
text processing and leads with a simpler, more
readable, and more powerful regex syntax:

And we didn't stop there.
We also made regexes composable! (see next page)

Perl 6:

PCRE: /(?<!foo)bar(?=baz)/

/<!after foo> bar <before baz>/

We choose to

LEAD

•	 Full grapheme based
Unicode support, including
Annex #29, meaning
unparalleled Unicode support

•	 Extensible grammars for
parsing data or code.
So powerful, even the
Perl 6 compiler uses them
to parse Perl 6 code!

•	 Execute code at any
time during parsing of
a grammar, or when a
certain match occurred

•	 Regular expressions are
cleaned up, made more
readable, taken to the next
level of usability, with a
lot more functionality

Text Processing

The "actions" (what to do when stuff got parsed):
class Calculations {
 method TOP ($/) { make $<calc-op>.made }
 method calc-op:sym<add> ($/) { make [+] $<num> }
 method calc-op:sym<sub> ($/) { make [-] $<num> }
}

The parser:
grammar Calculator {
 token TOP { <calc-op> }
 token num { \d+ }
 proto rule calc-op {*}
 rule calc-op:sym<add> { <num> '+' <num> }
 rule calc-op:sym<sub> { <num> '-' <num> }

 method calculate ($input, $actions = Calculations) {
 .made with self.parse: $input, :$actions
 }
}

my $calc = Calculator.new;
say $calc.calculate: '12 + 2'; # OUTPUT: 14
say $calc.calculate: '42 - 2'; # OUTPUT: 40

$calc does role {
 rule calc-op:sym<div> { <num> '/' <num> }
 rule calc-op:sym<mul> { <num> '*' <num> }
}

class ExtraCalc is Calculations {
 method calc-op:sym<div> ($/) { make [/] $<num> }
 method calc-op:sym<mul> ($/) { make [*] $<num> }
}

say $calc.calculate: '12 + 2', ExtraCalc; # OUTPUT: 14
say $calc.calculate: '42 - 2', ExtraCalc; # OUTPUT: 40
say $calc.calculate: '12 / 2', ExtraCalc; # OUTPUT: 6
say $calc.calculate: '42 * 2', ExtraCalc; # OUTPUT: 84

Try this out!
The grammar on the previous page is for a calculator that can do
addition and subtraction. It contains two pieces: a grammar that
parses the text and "actions" class with methods that get executed
when a token with the same name matches. (the make/made stuff is to
just shuttle the data around).

Let's teach it to do division and subtraction
as well. But here's the challenge: we cannot
modify the original code!

In Perl 6, grammars are just classes, so we can extend
our calculator grammar by just mixing in a role into it! The
actions class gets similar treatment; we merely subclass
the original. Here's all the extra code we'd need:

Perl 6 is a brand new language
So our ecosystem of Perl 6 modules is relatively baby-sized.
However, we make up for it with excellent interoperatibility with

other languages, such as Python, C, and Perl 5.

Search our ecosystem at modules.perl6.org to
find the modules you need and install them by running

zef install Some::Module

Modules and
Interoperatibility with

Other Languages

Other modules, like Inline::Python, Inline::Ruby, Inline::Lua, and others in
Inline:: namespace let you use your favourite libraries in your NEW favourite

language! Find them on modules.perl6.org

Use C libraries with NativeCall
(comes included with Rakudo compiler)

C++ is partially supported as well

Use Perl 5 modules with Inline::Perl5
(install from the ecosystem with zef)

Find Perl 5 modules on metacpan.org

use NativeCall;
sub strlen (Str --> size_t)
 is native {};

say strlen 'I love Perl 6!';
OUTPUT: 14

use App::ColorNamer:from<Perl5>;
my $namer = App::ColorNamer.new;
$namer.get_name($_).<name>.say
 for <ffaa00 123456>;
OUTPUT: Yellow Sea
Nile Blue

Rakudo Star D
istribution

{ {zef module installer

a collection of modules

Rakudo Com
piler

documentation

nqp

MoarVM JVM JavaScript

rakudo HLL

Just like gcc is a compiler for C code, Rakudo is a compiler for
Perl 6 code. Rakudo Star Distribution contains the compiler,
module installer, some documentation, and a collection of modules.
This is the most thoroughly tested option for using Perl 6 and
is recommended for most users. See our download page:
perl6.org/downloads

The modules included with Rakudo Star are not mandatory
and some users choose to use the compiler with the module
installer only, and install only the modules they need. Rakudo's
pre-built packages are available for many popular Linux
distributions: https://github.com/nxadm/rakudo-pkg/releases

You can also build minimally-tested, bleeding-edge
development commits: https://github.com/zoffixznet/r

Our fun, hugtastic
community is one of our biggest

strengths. Whether you need help with a
problem, wish to share something cool

you made, or just want to hang out, you'll
find the Perl community a fitting place.

Even if you decide you don't like Perl 6

people. Come chat with us!
as a language, we're certain you'll like our

Twitter.com/perl6org
Facebook.com/groups/perl6

Reddit.com/r/perl6
StackOverflow.com/tags/perl6

Blogs:
perl6.party

p6weekly.wordpress.com
pl6anet.org (blog aggregator)

#perl6 on irc.freenode.net
(web client: perl6.org/irc)

perl6-users-subscribe@perl.org
(send email to subscribe to mailing list)

Perl 6
 Ready to learn?

Introductory material
Perl 6 Introduction	 perl6intro.com
Language tutorials	 docs.perl6.org/language.html
Learn X in Y minutes	 learnxinyminutes.com/docs/perl6/

Books
Helpful selection chart	 perl6book.com

Practice Online
Perl 6 track on Exercism	 exercism.io/languages/perl6
Online Perl 6 REPL	 glot.io/new/perl6

More Resources
See our full list of resources	 perl6.org/resources

Live People
If you're stuck and don't
understand something, simply
join our IRC chat and just ask:	 perl6.org/irc

Blogs and Presentations
Perl 6 Weekly	 p6weekly.wordpress.com
Perl 6 tutorial blog posts	 perl6.party
Perl 6 Blog Aggregator	 pl6anet.org
Presentations by
Jonathan Worthington 	 jnthn.net/articles.shtml

This brochure was made possible by
kind donations from our friends

The Enlightened
Perl Organisation

www.enlightenedperl.org

Shadowcat
Systems Limited

www.shadow.cat

The Dog Ate My
Bookshop

www.thedogatemybookshop.com

design by @zoffix rev. 3

Perl 6 is driven by talented
volunteers as well as sponsorships

from companies and individuals

Sponsor a Perl 6
Developer Directly

perl6.org/sponsor-jnthn

Donate to
The Perl Foundation

donate.perlfoundation.org

Donate to The
Enlightened Perl

Organisation
enlightenedperl.org/donate

You can help too!

